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The magnetic properties of a nonequilibrium mixed spin-2 and spin-5/2 Ising ferrimagnetic system with a
crystal-field interaction �D� in the presence of a time-varying magnetic field on a hexagonal lattice are studied
by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices
with �=2 and S=5 /2. The Hamiltonian model includes intersublattice, intrasublattice, and crystal-field inter-
actions. The intersublattice interaction is considered antiferromagnetic to have a simple but interesting model
of a ferrimagnetic system. The set of mean-field dynamic equations is obtained by employing the Glauber
transition rates. First, we investigate the time variations in average sublattice magnetizations to find the phases
in the system, and the temperature dependence of the dynamic sublattice magnetizations to characterize the
nature �continuous or discontinuous� of the phase transitions and to obtain the dynamic phase transition points.
Then, we study the temperature dependence of the total magnetization to find the dynamic compensation points
as well as to determine the type of behavior. We also investigate the effect of a crystal-field interaction and the
exchange couplings between the nearest-neighbor pairs of spins on the compensation phenomenon and present
the dynamic phase diagrams. According to values of Hamiltonian parameters, the paramagnetic, the nonmag-
netic, and the four different ferrimagnetic fundamental phases, seven different mixed phases, and the compen-
sation temperature, or the N-type behavior in the Néel classification nomenclature exist in the system. A
comparison is made with the results of the available mixed spin Ising systems.
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I. INTRODUCTION

In recent years, the phenomenon of ferrimagnetism has
been one of the intensively studied subjects in statistical me-
chanics and condensed matter physics, because of their po-
tential device applications in technologically important ma-
terials. In contrast to ferromagnets and antiferromagnets,
there is in ferrimagnets an important possibility of the exis-
tence, under certain conditions, of a compensation tempera-
ture where the total magnetization vanishes below the critical
temperature. The existence of compensation temperatures is
of great technological importance, since at this point only a
small driving field is required to change the sign of the total
magnetization. This property is very useful in thermomag-
netic recording, electronic, and computer technologies. On
the other hand, mixed Ising systems provide simple models
that can show ferrimagnetic ordering and they may have
compensation temperatures. Moreover, since the mixed-spin
Ising systems have less translational symmetry than their
single spin counterparts, they exhibit many phenomena that
cannot be observed in the single-spin Ising systems and the
study of these systems can be relevant for understanding of
bimetallic molecular systems based magnetic materials. One
of the earliest and most extensively studied mixed spin Ising
systems is the spin-2 and spin-5/2 mixed system besides the
mixed spins Ising systems with spins �1, 1/2� �see �1–15� and
references therein�, with spins �1/2, 3/2� �see �16–23� refer-
ences therein�, with spins �1, 3/2� �see �24–30� references
therein�.

An early attempt to study the mixed spin-2 and spin-5/2
system on a honeycomb lattice was made by Kaneyoshi and
co-workers �31� within the frame work of the effective field
theory �EFT�. In particular, they examined the effect of a
positive single-ion anisotropy on the compensation tempera-
ture in order to clarify the characteristic feature of the
temperature dependence of the total magnetization
observed for a molecular-based magnetic material,
N�n-C4H9�4FeIIFeIII�C2O4�3 with �=2 �FeII� and S=5 /2
�FeIII�. Nakamura �32,33� applied to Monte Carlo �MC�
simulations to study the magnetic properties of a mixed
spin-2 and spin-5/2 system on a honeycomb lattice in order
to investigate a characteristic feature of AFeIIFeIII�C2O4�3
�A=N�n-CnH2n+1�4� �32� and the effect of single-ion aniso-
tropy on the characteristic feature of the temperature depen-
dence of the total magnetization �33�. Nakamura �34� also
studied the magnetic properties of the mixed spin-2 and spin-
5/2 system on a layered honeycomb lattice with MC simula-
tions in order to clarify the characteristic behavior of
AFeIIFeIII �C2O4�3 �A=N�n-CnH2n+1� , n=3–5�, especially
the effect of the interlayer interactions and a single-ion an-
isotropy on the existence of the compensation point were
examined. Li and co-workers �35,36� studied the magnetic
properties of the mixed spin-2 and spin-5/2 system on a lay-
ered honeycomb lattice by a multisublattice Green’s function
technique to investigate the magnetic behavior of AFeIIFeIII

�C2O4�3 �A=N�n-CnH2n+1� , n=3–5� �35� and the compen-
sation behavior of the system �36�. They �37� also studied the
low-temperature properties of the mixed spin-2 and spin-5/2
Heisenberg ferromagnetic system on a honeycomb lattice by
using a linear spin-wave theory in order to clarify the
low-temperature behavior of AFeIIFeIII �C2O4�3 �A
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=N�n-CnH2n+1� , n=3–5�. Wei and co-workers �38,39� ex-
amined the internal energy, specific heat and initial suscepti-
bility �38�, and tricritical behavior �39� of the mixed spin-2
and spin-5/2 ferrimagnetic system with an interlayer cou-
pling by the use of the EFT with correlations. Recently, Al-
bayrak and co-workers �40� studied the critical behavior of
the mixed spin-2 and spin-5/2 Ising ferromagnetic system on
Bethe lattice by using the exact recursion equations.

Despite these equilibrium studies, as far as we know, the
nonequilibrium aspects of the mixed spin-2 and spin-5/2
Ising ferrimagnetic system have not been investigated.
Therefore, the purpose of the present work is to study the
magnetic properties of a nonequilibrium mixed spin-2 and
spin-5/2 Ising ferrimagnetic system on a hexagonal lattice
with a crystal-field interaction in the presence of a time-
dependent oscillating external magnetic field. We use the
Glauber-type stochastic dynamics �41� to describe the time
evolution of the system. We examine the time variations in
average sublattice magnetizations to find the phases in the
system, and the thermal behavior of the dynamic magnetiza-
tions to characterize the nature �continuous or discontinuous�
of the phase transitions and obtain the dynamic phase tran-
sition �DPT� points. We investigate the total dynamic mag-
netization as a function of the temperature to find the dy-
namic of compensation temperatures as well as to determine
the type of behavior. We also investigate the effect of the
interactions parameters on the compensation phenomenon.
From these studies, the existence of the dynamic compensa-
tion temperatures is investigated and dynamic phase dia-
grams are calculated. A comparison is made with the results
of the available mixed spin Ising systems.

The outline of the rest of the paper is follows. In Sec. II,
the model is presented briefly and the derivation of the
mean-field dynamic equations of motion is given by using
the Glauber-type stochastic dynamics in the presence of a
time-varying magnetic field. In Sec. III, the behavior of the
average sublattice magnetizations, dynamic sublattice mag-
netizations and dynamic total magnetization are studied in
detail, and the dynamic phase diagrams are presented. Fi-
nally, we give the summary and conclusion in the last sec-
tion.

II. MODEL AND EQUATIONS OF MOTIONS

We consider a mixed spin-2 and spin-5/2 Ising ferrimag-
netic system on a hexagonal lattice. The lattice is formed by
alternate layers of � and S spins; hence, the two different
types of spins are described by Ising variables, which can
take the values �= �2, �1,0 and S= �5 /2, �3 /2, �1 /2.
� and S spins are distributed in alternate layers of a hexago-
nal lattice, seen in Fig. 1. In Fig. 1, open and solid circles
represent � and S spin, respectively. The Hamiltonian model
for the system is

H = − J1�
�ij�

�iSj − J2�
�ij�

�i� j − J3�
�ij�

SiSj − D��
i

�i
2 + �

j

Sj
2	

− H��
i

�i + �
j

Sj	 , �1�

where the summation index �ij� denotes a summation over

all pairs of nearest-neighbor spins. J1, J2, and J3 are the
exchange couplings between the nearest-neighbor pairs of
spins �−S, �−�, and S-S, respectively. It is seen from Fig.
1, J1 the interaction is restricted to the z1 nearest-neighbor
pair of spins that z1=4, and J2 and J3 are restricted to the
coordination numbers of z2 and z3, respectively, in which
z2=z3=2. The parameter J1 will be taken negative in all the
subsequent analyses, that is, the intersublattice coupling is
antiferromagnetic to have a simple but an interesting model
of a ferrimagnetic system. D is the crystal-field interaction or
a single-ion anisotropy constant. We take the same single-ion
anisotropy constant for both magnetic moments in order to
avoid one more interaction constant, as in Refs. �42,43�. One
can also use the different anisotropy constants for both mag-
netic moments as in Refs. �27,28,36,38,39�. H is an oscillat-
ing magnetic field of the form

H�t� = H0 cos�wt� , �2�

where H0 and w=2�� are the amplitude and the angular
frequency of the oscillating field, respectively. The system is
in contact with an isothermal heat bath at absolute tempera-
ture TA.

Now, we apply the Glauber-type stochastic dynamics �41�
to obtain the set of mean-field dynamic equations. Thus, the
system evolves according to the Glauber-type stochastic pro-
cess at a rate of 1 /� transitions per unit time; hence the
frequency of spin flipping, f , is 1 /�. Leaving the S spins
fixed, we define P���1 ,�2 , . . . ,�N ; t� as the probability that
the system has the �− spin configuration, �1 ,�2 , . . . ,�N, at
time t, also, by leaving the �− spins fixed, we define
PS�S1 ,S2 , . . . ,SN ; t� as the probability that the system has the
S-spin configuration, S1 ,S2 , . . . ,SN, at time t. Then, we cal-
culate Wi

���i→�i�� and Wj
S�Sj→Sj��, the probabilities per

unit time that the ith � spin changes from �i to �i� �while the
S spins momentarily fixed� and the jth S spin changes from
Sj to Sj� �while the � spins momentarily fixed�, respectively.
Thus, if the S spins momentarily fixed, the master equation
for the � spins can be written as

FIG. 1. The sketch of the spin arrangement on the hexagonal
lattice. The lattice is formed by alternate layers of � �open circles�
and S �solid circles� spins.
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d

dt
P���1,�2, . . . ,�N;t� = − �

i 
 �
�i��i�

Wi
���i → �i���

� P���1,�2, . . . ,�i, . . . �N;t�

+ �
i 
 �

�i��i�

Wi
���i� → �i��

� P���1,�2, . . . ,�i�, . . . �N;t� ,

�3�

where Wi
���i→�i�� is the probability per unit time that the

ith spin changes from the value �i to �i�. Since the system is
in contact with a heat bath at absolute temperature TA, each
spin can change from the value �i to �i� with the probability
per unit time;

Wi
���i → �i�� =

1

�

exp�− �	E���i → �i���

�
�i�

exp�− �	E���i → �i���
, �4�

where �=1 /kB TA, kB is the Boltzmann constant and TA is
the absolute temperature, ��i�

is the sum over the five pos-
sible values of �i�= �2, �1,0, and

	E���i → �i�� = − ��i� − �i��J1�
j

Sj + J2�
j

� j + H	
− ���i��

2 − ��i�2�D , �5�

gives the change in the energy of the system when the �i spin
changes. The probabilities Wi

���i→�i�� are given in the Ap-
pendix. The probabilities satisfy the detailed balance condi-
tion. Since Wi

���i→�i�� does not depend on the value �i, we
can write Wi

���i→�i��=Wi
���i��, then the master equation be-

comes

d

dt
P���1,�2, . . . ,�N;t�

= − �
i 
 �

�i��i�

Wi
���i���P���1,�2, . . . ,�i, . . . ,�N;t�

+ �
i

Wi
���i�
 �

�i��i�

P���1,�2, . . . ,�i�, . . . ,�N;t�� .

�6�

Since the sum of the probabilities is normalized to one, by
multiplying both sides of Eq. �6� by �k and taking the aver-
age, we obtain

�
d

dt
��k� = − ��k� +� 2 exp�4�D�sinh
2��J1�

j

Sj + J2�
j

� j + H	� + exp��D�sinh
��J1�
j

Sj + J2�
j

� j + H	�
exp�4�D�cosh
2��J1�

j

Sj + J2�
j

� j + H	� + exp��D�cosh
��J1�
j

Sj + J2�
j

� j + H	� +
1

2
 , �7�

or, in terms of a mean field approach,

�
d

dt
��� = − ��� + � 2 exp�4�D�sinh�2�a1� + exp��D�sinh��a1�

exp�4�D�cosh�2�a1� + exp��D�cosh��a1� +
1

2
 , �8�

where � . . . � denotes the canonical thermal average and a1= �J1z1�S�+J2z2���+H0 cos�wt��. Equation �8� can be written in the
form



d

d�
m� = − m� +� 2 exp�4

d

T
	sinh�2

a2

T
	 + exp� d

T
	sinh�a2

T
	

exp�4
d

T
	cosh�2

a2

T
	 + exp� d

T
	cosh�a2

T
	 +

1

2
 , �9�

where T=
kBTA

�J1� , d= D
�J1� , a2= �−z1mS+

J2

�J1�z2m�+h0 cos����, h0=
H0

�J1� , m�= ���, mS= �S�, �=wt, and 
=�w.
Now, assuming that the spins � remain momentarily fixed and S spins change, we obtain the second mean-field dynamic

equation by using a similar calculation as



d

d�
mS = − mS +� 5 exp�2

d

T
	sinh�5

2

a3

T
	 + 3 exp�− 2

d

T
	sinh�3

2

a3

T
	 + exp�− 4

d

T
	sinh�1

2

a3

T
	

2 exp�2
d

T
	cosh�5

2

a3

T
	 + 2 exp�− 2

d

T
	cosh�3

2

a3

T
	 + exp�− 4

d

T
	cosh�1

2

a3

T
	 , �10�
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where a3= �−z1m�+
J3

�J1�z3mS+h0 cos����. Hence, a set of
mean-field dynamical equations of the system is obtained.
We fixed J1=−1 that the intersublattice interaction is antifer-
romagnetic and 
=2�. In the next section, we will give the
numerical results of these equations.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Time variations in average order parameters

In order to investigate the behaviors of time variations in
order parameters, first, we have to study the stationary solu-
tions of the set of coupled mean-field dynamical equations,
given in Eqs. �9� and �10�, when the parameters T, J2, J3, d,
and h0 are varied. The stationary solutions of these equations
will be periodic functions of � with period 2�; that is,
m���+2��=m���� and mS��+2��=mS���. Moreover, they
can be one of three types according to whether they have or
do not have the property

m��� + �� = − m���� �11a�

and

mS�� + �� = − mS��� . �11b�

The first type of solution satisfies both Eqs. �11a� and �11b�
and is called a symmetric solution, which corresponds to a
paramagnetic �p� phase. In this solution, the sublattice aver-
age magnetizations, m���� and mS���, are equal to each other.
They oscillate around the zero value and are delayed with
respect to the external magnetic field. The second type of
solution, which does not satisfy Eqs. �11a� and �11b�, is
called a nonsymmetric solution, but this solution corresponds
to a ferrimagnetic �i� solution because the sublattice average
magnetizations m���� and mS��� are not equal each other
�m�����mS���� and they oscillate around a nonzero value.
Hence, if m���� and mS��� oscillate around �2 and �5 /2,
respectively, this solution called the ferrimagnetic-1 �i1�
phase; if m���� and mS��� oscillate around �2 and �3 /2,
respectively, the solution called the ferrimagnetic-2 �i2�
phase; if m���� and mS��� oscillate around �2 and �1 /2,
respectively, the solution called the ferrimagnetic-3 �i3�
phase, and if m���� and mS��� oscillate around �1 and
�1 /2, respectively, the solution called the ferrimagnetic-4
�i4� phase. The third type of solution, which satisfies Eq.
�11a� but does not satisfy Eq. �11b�, corresponds to a non-
magnetic solution �nm�. In this case, m���� oscillates around
the zero value and is delayed with respect to the external
magnetic field and mS��� does not follow the external mag-
netic field anymore, but instead of oscillating around a zero
value, it oscillates around a nonzero value. These facts are
seen explicitly by solving Eqs. �9� and �10�, numerically.
These equations are solved by using the numerical method of
the Adams-Moulton predictor corrector method for a given
set of parameters and initial values. A few explanatory ex-
amples are given in Fig. 2. Figures 2�a�–2�d� represent the
paramagnetic, ferrimagnetic-1, nonmagnetic fundamental so-
lutions or phases, and the i4+ p mixed phase, respectively. In
addition to these three fundamental phases and a mixed
phase, three more fundamental phases, namely, the

ferrimagnetic-2 �i2�, the ferrimagnetic-3 �i3�, the
ferrimagnetic-4 �i4�, and six more mixed phases, namely, the
i1+ p in which i1, p solutions coexist; the i1+nm in which i1,
nm solutions coexist; the i2+ p in which i2, p solutions coex-
ist; the i2+nm in which i2, nm solutions coexist; the i3+ p in
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FIG. 2. Time variations in the average sublattice magnetizations
�m���� and mS����: �a� exhibiting a paramagnetic phase �p�, J1=
−1.0, J2=2.0, J3=0.7, d=−4.5, h0=2.5, and T=18. �b� Exhibiting a
ferrimagnetic phase �i1�, J1=−1.0, J2=2.0, J3=0.1, d=1, h0=0.1,
and T=4. �c� Exhibiting a nonmagnetic phase �nm�, J1=−1.0, J2

=1.2, J3=0.5, d=−3, h0=0.1, and T=0.15. �d� Exhibiting a coex-
istence region or mixed phase �i4+ p�, J1=−1.0, J2=8.0, J3=0.5,
d=−10, h0=2.5, and T=1.2.
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which i3, p solutions coexist and the i4+nm in which i4, nm
solutions coexist mixed phases, exist in the system.

B. Thermal behavior of dynamic sublattice magnetizations
and the total magnetization

First, we investigate the behavior of the average sublattice
magnetizations in a period or the dynamic sublattice magne-
tizations as a function of the reduced temperature. This in-
vestigation leads us to characterize the nature �a first order or
a second order� of phase transitions and find the DPT. Then,
we study the total dynamic magnetization as a function of
temperature to find the compensation temperatures and to
determine the type of behavior. The dynamic sublattice mag-
netizations �M� ,MS� and the total dynamic magnetization
Mt=

M����+Ms���
2 are defined as

M� =
1

2�
�

0

2�

m����d� , �12a�

MS =
1

2�
�

0

2�

mS���d� , �12b�

Mt =
1

2�
�

0

2�

�mS���+m����
2 �d� . �12c�

The behaviors of dynamic sublattice magnetizations
�M� ,MS� and the total dynamic magnetization �Mt� as func-
tions of the temperature for several values of interaction pa-
rameters are obtained by combining numerical methods of
the Adams-Moulton predictor corrector with the Romberg
integration. The total magnetization �Mt� vanishes at the
compensation temperature Tcomp. Then, the compensation
point can be determined by looking for the crossing point
between the absolute values of the sublattice magnetizations.
Therefore, at the compensation point, we must have

�M��Tcomp�� = �MS�Tcomp�� �13�

and

sgn�M��Tcomp�� = − sgn�MS�Tcomp�� . �14�

We also require that Tcomp�Tc, where Tc is the critical point
temperature. These conditions demonstrate that at Tcomp, the
M� and MS cancel each other, whereas at Tc both are zero.
Few explanatory and interesting examples are plotted in
Figs. 3�a�–3�e� in order to illustrate the calculation of the
DPT points and the compensation temperatures. In these fig-
ures, Tc and Tt are the critical or the second-order and first-
order phase transition temperatures, respectively. Figure 3�a�
shows the behavior of �M��, �MS�, and �Mt� as a function of
the temperature for J1=−1.0, J2=3.0, J3=0.8, d=−1.0, and
h0=0.1. In Fig. 3�a�, �M��=2 and �MS�=2.5 at the zero tem-
perature, and they decrease to zero continuously until Tc as
the temperature increases, hence a second-order phase tran-
sition occurs at Tc=16.96. In this case, the dynamic phase
transition is from the i1 phase to the p phase. Moreover, from
the behavior of the total dynamic magnetization, one can see
that only one compensation temperature or N-type behavior

occurs in the system that exhibits the same behavior classi-
fied after Néel �44� theory as the N-type �45�. Figures 3�b�
and 3�c� illustrate the thermal variations of �M��, �MS�, and
�Mt� for J1=−1.0, J2=2.0, J3=0.2, d=−1.5, and h0=0.1 for
various different initial values. The behavior of Fig. 3�b�, is
similar to Fig. 3�a�, hence the system undergoes a second-
order phase transition from the i1 phase to the p phase at
Tc=11.29. In Fig. 3�c�, the system undergoes two successive
phase transitions: the first one is a first order, because the
discontinuous occurs for the dynamic sublattice magnetiza-
tions at Tt=0.36. Transition is from the p phase to the i1
phase. The second one is a second order from the i1 phase to
the p phase at Tc=11.29. This means that the coexistence
region, i.e., the i1+ p mixed phase exist in the system. More-
over, the compensation temperature or the N-type behavior
exists in the system again. We should also mention that two
successive transitions have also been experimentally ob-
served in DyVO4 �46�. Finally, Figs. 3�d� and 3�e� show the
behavior the thermal variations of �M��, �MS�, and �Mt� for
J1=−1.0, J2=8.0, J3=0.1, d=−10.0, and h0=2.5 for various
different initial values. In Fig. 3�d�, �M��=1 and �MS�=0.5 at
the zero temperature and they decrease zero discontinuously
as the temperature increases; hence the system undergoes a
first-order phase transition from the i4 phase to the p phase at
Tt=2.52. In Fig. 3�e�, �M��, �MS�, and �Mt� always equal to
zero; hence the system does not undergo any phase transi-
tion. This figure corresponds to the p phase. From Figs. 3�d�
and 3�e�, one can see that the i4+ p mixed phase region exists
until Tt. There is no compensation temperature in the system
for this case.

C. Dynamic phase diagrams

Since we have obtained DPT points and compensation
temperatures in Sec. III B, we can now present the dynamic
phase diagrams of the system. The calculated phase diagrams
in the �d ,T� plane are presented in Fig. 4 and �J2 ,T�,
�−J3 ,T�, �d ,J2�, and �d ,−J3� planes are presented in Fig. 5
for various values of interaction parameter. In these dynamic
phase diagrams, the solid, dashed, and dash-dot-dot lines
represent the second-order, first-order phase transitions tem-
peratures, and the compensation temperatures, respectively.
The dynamic tricritical point is denoted by a filled circle.

Figure 4 illustrates the dynamic phase diagrams including
the compensation behaviors in �d ,T� plane and seven main
topological different types of phase diagrams are seen. From
these phase diagrams, the following phenomena have been
observed. �1� Fig. 4�a� does not contain the compensation
temperatures, but the others do. �2� The re-entrant behavior
is only seen in the phase diagrams of Figs. 4�a�, 4�c�–4�e�,
and 4�g�. �3� The system contains the p, nm, i1 and i2 fun-
damental phases, and the i1+ p, i2+ p, i4+ p, i1+nm, and i4
+nm mixed phases. �4� The system exhibits one or two the
dynamic triple point �TP�, seen in Figs. 4�e�–4�g�. Moreover,
a dynamic quadruple point �QP� appears in Fig. 4�g�. �5� In
Fig. 4�f�, the filled triangle separates the i2 phase from the i1
for high value of T and the i2+ p mixed phase from the i1
+ p mixed phase for low value of T. We have found a similar
behavior to the one seen in the equilibrium phase diagrams
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of the mixed spin-1/2 and spin-5/2 �47�, mixed spin-1 and
spin-5/2 �48�, mixed spin-3/2 and spin-5/2 ferrimagnetic sys-
tem �49�, the mixed spin Ising systems on Bethe lattice �50�,
the mixed spin-1/2 and spin-S Ising model on a bathroom tile

�4–8� lattice �51�, and also dynamic phase diagrams of the
mixed spin-1/2 and spin-5/2 �52�. We should also mention
that these dynamic phase diagrams are new phase diagrams,
which have been obtained in this system.
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FIG. 3. The temperature dependence of the dynamic sublattice magnetizations ��M�� , �MS�� and the total dynamic magnetization ��Mt��.
Tc and Tt are the second- and first-order phase transition temperatures, respectively. �a� Exhibiting a second-order phase transition from the
i1 phase to the p phase for J1=−1.0, J2=3.0, J3=0.8, d=−1.0, and h0=0.1 and Tc is found 16.96. �b� Exhibiting a second-order phase
transition from the i1 phase to the p phase for J1=−1.0, J2=2.0, J3=0.2, d=−1.5, and h0=0.1 and the initial values of �M�� and �MS� are taken
one; Tc is found 11.29. �c� Exhibiting two successive phase transitions, the first one is a first-order phase transition from the p phase to the
i1 phase and the second one is a second-order phase transition the from the i1 phase to the p phase for J1=−1.0, J2=2.0, J3=0.2, d=−1.5,
and h0=0.1 and the initial values of �M�� and �MS� are taken zero; Tc and Tt are found 11.29 and 0.36, respectively. �d� Exhibiting a first-order
phase transition from the i4 phase to the p phase for J1=−1.0, J2=8.0, J3=0.1, d=−10, and h0=2.5 and the initial values of �M�� and �MS�
are taken one; Tt is found 2.52. �e� The system does not undergo any phase transition for J1=−1.0, J2=8.0, J3=0.1, d=−10, and h0=2.5 and
the initial values of �M�� and �MS� are taken zero. This figure corresponds to the p phase.
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We also calculate the dynamic phase diagrams including
the compensation behaviors in the �J2 ,T�, �−J3 ,T�, �d ,J2�,
and �d ,−J3� planes, and five, five, five, and two main topo-
logical different types of dynamic phase diagrams are found,
respectively. Since the most of the phase diagrams in these
planes can be readily obtained from the phase diagram in
�d ,T� plane, especially high and low values of d. We present
only one interesting phase diagram that cannot be obtained
readily from the phase diagrams in the �d ,T� plane, in each
plane, seen in Figs. 5�a�–5�d�. The phase diagram is con-
structed for J1=−1, J3=0.8, h0=0.1, and d=−1.0, and is pre-
sented in Fig. 5�a� that the system exhibits the p and i1 fun-
damental phases. In this phase diagram, the dynamic phase
boundary is only a second-order phase line, which separates
the p phase from the i1 phase. Figure 5�a� contains the com-
pensation temperatures, but does not illustrate the dynamic
tricritical behavior. The similar phase diagram with Fig. 5�a�
was also obtained in the mixed spin-1/2 and spin-1 system
�14,15�. Figure 5�b� shows the phase diagrams in the
�−J3 ,T� plane for J1=−1, J2=2, h0=0.1, and d=−1.5. In this
phase diagram, the system exhibits one mixed phase, namely,
i1+ p, besides the i1 and p fundamental phases. The dynamic

phase boundary between the i1 and p is a second-order line
and between the i1 and i1+ p is first-order line. The phase
diagram is presented for J1=−1, J3=0.8, h0=1, and T=0.1,
illustrated in Fig. 5�c�. The phase diagram exhibits the i1, p,
i1+ p, i2+ p, and i4+ p phases. The dynamic phase boundaries
among these phases are first-order lines, except the boundary
between the i1+ p and i2+ p phases that is a second-order
line. The system also exhibits the critical end point �E�. Fig-
ure 5�d� shows the phase diagram for J1=−1, J2=2, h0=0.1,
and T=0.1 in the �d ,−J3� plane. The system exhibits the i1
+ p and i4+ p mixed phases, besides the i1 and p fundamental
phases. The dynamic phase boundaries among the phases are
first-order phase lines. Thus, these phase diagrams of Figs.
5�b�–5�d� are only observed in this system.

IV. SUMMARY AND CONCLUSION

In this work, we have studied within a mean-field ap-
proach the stationary states of the kinetic mixed spin-2 and
spin-5/2 Ising model in the presence of a time-dependent
oscillating external magnetic field on a hexagonal lattice.
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The lattice is formed by alternate layers of spins �=2 and
S=5 /2. For this spin arrangement, any spin at one lattice site
has two nearest-neighbor spins on the same sublattice, and
four on the other sublattice. The Hamiltonian model includes
the intersublattice interaction, intrasublattice interaction,
crystal field interaction, and sinusoidal magnetic field. The
intersublattice interaction is antiferromagnetic. We use the
Glauber-type stochastic dynamics to describe the time evo-
lution of the system. We have studied time variations in the
average sublattice magnetizations in order to find the phases
in the system and the temperature dependence of the average
sublattice magnetizations in a period, which is also called the
dynamic magnetizations, to obtain the dynamic phase transi-
tion points as well as to characterize the nature �continuous
or discontinuous� of transitions. The total magnetization is
also investigated as a function of temperature to find the
compensation temperatures and to determine the type of be-
havior. Finally, dynamic phase diagrams are presented in two
different planes. The phase diagrams contain the paramag-
netic, the nonmagnetic, and three different ferrimagnetic fun-
damental phases, five different mixed phases, and the com-
pensation temperature or the N-type behavior, depending on
the interaction parameters. The system also displays the
triciritical and re-entrant behaviors, which also strongly de-
pend on interaction parameters. Moreover, in general, the
dynamic boundary between the fundamental phases is a
second-order line, but the boundary between the fundamental
and mixed phases and also boundaries among the mixed
phases are first-order lines.

The comparison of the present results with the results of
the kinetic mixed spins �1/2, 3/2� Ising system �23� is as
follows: �1� the mixed spins �2, 5/2� Ising system displays
only N-type behavior, but the mixed spins �1/2, 3/2� Ising
system exhibits both P-type and L-type behaviors �44,45�.
P-type dependence shows the temperature-induced maxi-
mum as the temperature raises, whereas the N-type curve is
being characterized by one compensation point at which re-
sultant magnetization disappears due to the complete cancel-
lation of the sublattice magnetization. The L-type curve �53�
is very analogous to the P-type dependence, however, the
resultant magnetization starts from zero in this particular
case. �2� The mixed spins �2, 5/2� system contains seven
mixed phases, besides six fundamental phases, but the mixed
spins �1/2, 3/2� contains three mixed phases, besides three
fundamental phases. �3� The mixed spins �2, 5/2� system
exhibit the dynamic quadruple point, the triple point, and the
critical end point, but the mixed spins �1/2, 3/2� does not. �4�
The mixed spins �2, 5/2� system exhibits a re-entrant behav-
ior, but the spins �1/2, 3/2� system does not. �5� The mixed
spins �2, 5/2� Ising system has more main topological differ-
ent types of phase diagrams than the spins �1/2, 3/2� system.
On the other hand, the main differences between the kinetic
mixed spins �2, 5/2� and spins �1/2, 1� �14,15� Ising systems
are as follows: �1� both system display N-type behavior. �2�
The mixed spins �2, 5/2� and spins �1/2, 1� �15� Ising systems
exhibit a dynamic tricritical and a re-entrant behaviors. �3�
The mixed spins �2, 5/2� Ising system displays more funda-
mental phase diagrams than the spins �1/2, 1� �14,15� system.
�4� The mixed spins �2, 5/2� system contains seven mixed
phases, besides six fundamental phases, but the mixed spins

�1/2, 1� �15� contains three mixed phases, besides three fun-
damental phases. �5� The mixed spins �2, 5/2� system exhib-
its the QP, TP, and E special points, but the mixed spins �1/2,
1� �15� exhibits only the dynamic multicritical �A� and the
dynamic double critical end �B� special points. Therefore,
from these comparisons one can see that the mixed spins �2,
5/2� Ising system gives more richer phase diagrams than the
mixed Ising systems with spins �1/2, 1� and with spins �1/2,
3/2�.

Finally, we should also mention that this mean-field dy-
namic study, in spite of its limitations such as the correlation
of spin fluctuations have not been considered, suggests that
kinetic mixed spin-2 and spin-5/2 Ising model has an inter-
esting dynamic behavior and gives rich dynamic phase dia-
grams. Hence, we hope that our detailed theoretical investi-
gation may stimulate further works to study the
nonequilibrium or the dynamic phase transition in the kinetic
mixed spins �2, 5/2� Ising system by using nonperturbative
methods such as kinetic Monte-Carlo �MC� simulations or
renormalization-group calculations. We also mention that
some of the first-order lines and some of the tricritical and
the other special points might be artifacts of the mean-field
calculation. This fact has been discussed extensively in the
kinetic spin-1/2 Ising model in recent works �54–56�; hence,
this system should be studied by using nonperturbative meth-
ods in order to find the artifacts in the first-order phase lines
and the tricritical points. Moreover, our results will be in-
structive for the time-consuming process of the dynamic
nonperturbative calculations, such as the dynamic MC simu-
lations, which consequently can short the dull process of
searching the critical behavior while using the dynamic MC.
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APPENDIX: THE VALUES OF Wi
�(�i\�i�)

The probabilities Wi
���i→�i�� in Eq. �4� are calculated as

follows:

Wi
��2 → 0�

= Wi
��1 → 0� = Wi

��− 1 → 0� = Wi
��− 2 → 0� = Wi

��0�

=
1

�

1

2 exp��D�cosh��x� + 2 exp�4�D�cosh�2�x� + 1
,

Wi
��2 → 1�

= Wi
��0 → 1� = Wi

��− 1 → 1� = Wi
��− 2 → 1� = Wi

��1�

=
1

�

exp��x�exp��D�
2 exp��D�cosh��x� + 2 exp�4�D�cosh�2�x� + 1

,
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Wi
��1 → 2�

= Wi
��0 → 2� = Wi

��− 1 → 2� = Wi
��− 2 → 2� = Wi

��2�

=
1

�

exp�2�x�exp�4�D�
2 exp��D�cosh��x� + 2 exp�4�D�cosh�2�x� + 1

,

Wi
��1 → − 1�

= Wi
��2 → − 1� = Wi

��0 → − 1�

= Wi
��− 2 → − 1� = Wi

��− 1�

=
1

�

exp�− �x�exp��D�
2 exp��D�cosh��x� + 2 exp�4�D�cosh�2�x� + 1

,

Wi
��2 → − 2�

= Wi
��1 → − 2� = Wi

��0 → − 2�

= Wi
��− 1 → − 2� = Wi

��− 2�

=
1

�

exp�− 2�x�exp�4�D�
2 exp��D�cosh��x� + 2 exp�4�D�cosh�2�x� + 1

,

where x=J1� jSj +J2� j� j +H.
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